Absolute Rate Constant for the Reaction of Diphenvlcarbene with C_{60}

John E. Chateauneuf

Radiation Laboratory, University of Notre Dame Notre Dame, Indiana 46556

Received June 13, 1994

Recently, in their efforts to develop polymers containing the C_{60} moiety, Wudl and co-workers¹ have demonstrated that divalent carbon equivalents may be added to fullerene C₆₀ to produce functionalized C_{61} fulleroids. Specifically, the addition of a diphenylcarbene (Ph_2C :) equivalent to a C_{60} double bond was accomplished by dipolar addition of diphenyldiazomethane (Ph_2CN_2) followed by N₂ extrusion of the intermediate fivemembered-ring heterocycle. The resulting cyclopropyl adduct is then believed to undergo a norcaradiene-cycloheptatrienelike electrocyclic rearrangement and spherically expand to the Ph_2C_{61} fulleroid product (see Scheme 1). The expanded fullerenes were found to essentially retain the electronic structure of C_{60} .

In the present work, laser flash photolysis (LFP) technique has been used to measure the absolute rate constant for the reaction of Ph_2C : with C_{60} . This reaction represents the overall process of inflation of buckminsterfullerene C₆₀ to fulleroid Ph_2C_{61} .

$$Ph_2C: + C_{60} \rightarrow Ph_2C_{61} \tag{1}$$

The experimental difficulties in obtaining absolute kinetics of the reaction of transient intermediates toward C_{60} by optical spectroscopy have been well documented.² For example, the intense UV absorption bands of C₆₀ often inhibit monitoring of the addition reactions of free radicals to C_{60} due to spectral overlap with the absorption bands of the free radicals. The intense UV absorption bands of C_{60} and the facile generation of excited triplet C_{60} (${}^{3}C_{60}^{*}$) also present difficulties in the selective photoexcitation of free radical precursors using UV excitation. Free radical reactivity toward C₆₀ has been successfully obtained by optical spectroscopy, however, by monitoring growth kinetics of both UV² and IR^{2c} absorption bands of free radical/C₆₀ addition adducts, RC₆₀.

The measurement of the decay kinetics of triplet Ph₂C:, λ_{max} = 310 nm,³ in the presence of C_{60} was also unsuccessful due to the above limitations. However, a rate constant of 4.0 \times $10^8 \text{ M}^{-1} \text{ s}^{-1}$ was obtained for the reaction of Ph₂C: with C₆₀ to form Ph_2C_{61} due to the following favorable circumstances:

(1) The visible absorption band of Ph_2CN_2 was sufficiently intense to allow selective 532 nm LFP of Ph₂CN₂ over a significant C₆₀ concentration range.

(2) The Ph₂C: addition adduct, Ph_2C_{61} , could be monitored at a wavelength that did not significantly overlap with either Ph_2CN_2 or C_{60} .

Figure 1. Top: Comparison of the UV-visible absorption spectra of 1×10^{-3} M C₆₀ (-); and 3.5×10^{-2} M Ph₂CN₂ (- - -). Bottom: Absorption spectra observed 15 s and 3 and 7 min following addition of Ph₂CN₂ to a 5 \times 10⁻⁴ M C₆₀ benzene solution; see text. Inset: Time dependence of production of the 426 nm product.

Wavelength, nm

Scheme 1

(3) Rapid mixing procedures allowed for kinetic measurements to be obtained prior to significant thermal reactivity of Ph_2CN_2 with C_{60} .

(4) Triplet ${}^{3}C_{60}$ * was found to react rapidly with Ph₂CN₂ at $4.1 \times 10^8 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$. Therefore, at high quenching concentrations of C_{60} , when some C_{60} excitation did occur, the ${}^{3}C_{60}$ * lifetime was short compared to Ph₂C₆₁ formation⁴ and did not interfere in obtaining Ph_2C_{61} growth kinetics. The details of the experimental results are described below.

Figure 1 (top) contains a comparison of the UV-visible absorption spectra⁵ of 1×10^{-3} M C₆₀ and 3.5×10^{-2} M Ph₂-CN₂ in benzene solution⁶ measured in 6 mm Suprasil quartz LFP cells. In a typical experiment two LFP cells were prepared and thoroughly deaerated with argon, with one containing 1.0

2677

0002-7863/95/1517-2677\$09.00/0 © 1995 American Chemical Society

^{(1) (}a) Shi, S.; Khemani, K. C.; Li, Q.; Wudl, F. J. Am. Chem. Soc. **1992**, *114*, 10656–10657. (b) Suzuki, T., Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, O. Science **1991**, 254, 1186–1188. (c) Baum, R. M. Chem. Eng. News 1991, 69 (Dec 16), 17-20. (d) Eiermann, M.; Wudl, F.; Prato,
 M.; Maggini, M. J. Am. Chem. Soc. 1994, 116, 8364-8365.
 (2) (a) Dimitrijević, N. M.; Kamat, P. V.; Fessenden, R. W. J. Phys.
 Chem. 1993, 97, 615-618. (b) Walbiner and Fisher have recently

demonstrated that the initial rate constant for the reaction of benzyl radical with C_{60} of 9.3 \times 10⁸ M⁻¹ s⁻¹, as determined by optical spectroscopy,^{2a} **∕**1^{−1} was overestimated and have measured a rate constant of $1.4 \times 10^{\circ}$ was overestimated and have measured a rate constant of $1.4 \times 10^7 \text{ M}^{-1}$ s⁻¹ by time-resolved ESR spectroscopy. Walbiner, M.; Fisher, H. J. Phys. Chem. **1993**, 97, 4880-4881. (c) Guldi, D. M.; Hungerbühler, H.; Janata, E.; Asmus, K.-D. J. Phys. Chem. **1993**, 97, 11258-11264. (d) Dimitrijević, N. M. Chem. Phys. Lett. **1992**, 194, 457-460. (3) (a) Platz, M. S.; Maloney, V. M. In Kinetics and Spectroscopy of Carbenes and Biradicals; Plenum: New York, 1990; pp 239-352. (b) Scaiano, J. C. In Chemical Kinetics of Small Organic Radicals; Alfassi, Z. B., Ed.; CRC Press: Boca Raton, FL, 1988; Vol. III, pp 73-101.

⁽⁴⁾ The similarities in k_{bi} for Ph₂C₆₁ production (420 nm) and ${}^{3}C_{60}^{*}$ quenching (750 nm) by Ph₂CN₂ suggest a mechanism for direct Ph₂C₆₁ production from ${}^{3}C_{60}^{*}$. However, when the 750 nm decay and the 420 nm growth at [C₆₀] = 1 × 10⁻⁴ M and [Ph₂CN₂] = 1.75 × 10⁻² M were monitored, $k_{ob} = 5 \times 10^{6} \text{ s}^{-1}$ and $8 \times 10^{4} \text{ s}^{-1}$, respectively, were obtained, which decay and the decay and set of the theorem of the theorem of the set of the which clearly demonstrates that the decay and growth are not concurrent.

⁵⁾ SLM-Aminco Spectronic 3000 array spectrophotometer

⁽⁶⁾ C_{60} (SES Research, Inc., 99.9%) was used as received; Ph_2CN_2 was prepared according to a previously described procedure;⁷ benzene (Aldrich, spectranalyzed) was freshly distilled from calcium hydride prior to use; and cyclohexane (Fisher, HPLC grade) was used as received.

Figure 2. Dependence of k_{ob} measured at 420 nm on C₆₀ concentration. Top inset: Absorption signal observed containing 5×10^{-4} M C₆₀. Bottom inset: Absorption spectrum observed following LFP of Ph2-CN₂ in the presence of C₆₀.

mL of a known concentration of C_{60} and the other containing a Ph₂CN₂ solution adjusted to an optical density (OD) of 2.0 at the 532 nm laser excitation⁸ wavelength. Immediately prior to an experiment 1.0 mL of Ph₂CN₂ solution was transferred to the LFP cell containing the C_{60} solution via syringe under a nitrogen atmosphere and vigorously shaken prior to laser excitation. Mixing, LFP, and collection of data were accomplished within ca. 15-30 s. This procedure was also used to monitor the thermal reaction of Ph_2CN_2 with C_{60} . Figure 1 (bottom) contains UV-visible spectra taken at 15 s, 3 min, and 7 min following the procedure described using a 5 \times 10⁻⁴ M C_{60} solution. Product formation is clearly observed. As mentioned, Ph_2C_{61} retains much of the electronic nature¹ of C_{60} ; however, Ph₂C₆₁ also possesses visible absorption bands^{1b} that are distinctive to Ph_2C_{61} . The absorption band at 426 nm (Figure 1, bottom) was also observed in the reaction of Ph₂- CN_2 with C_{60} in cyclohexane and corresponds to the 429 nm band reported for isolated Ph_2C_{61} in cyclohexane.^{1b} The production of the 426 nm band in benzene was monitored over a 30 min period, and a plot of $\ln OD_{\infty}/(OD_{\infty} - OD)^9$ versus time (Figure 1, inset) indicates that formation of Ph₂C₆₁ occurs with overall first-order kinetics with an apparent rate constant of $1.4 \times 10^{-3} \text{ s}^{-1}$.

The combination of the distinctive 426 nm absorption band of Ph_2C_{61} and the relatively slow reactivity of Ph_2CN_2 with C_{60} allowed for determination of an absolute bimolecular rate constant, k_{bi} , for the reaction of Ph₂C: with C₆₀. LFP (532) nm) of Ph_2CN_2 in deaerated benzene in the absence of C_{60} resulted in no detectable product absorption signals. Ph₂C: generation was verified, however, by detection of the formation

of diphenylcarbonyl oxide³ in O₂-saturated benzene solution following 532 nm laser excitation.¹⁰ LFP of Ph₂CN₂ in the presence of C₆₀ resulted in formation of product possessing an apparent absorption maximum at 420 nm (Figure 2, bottom). Observed rate constants, k_{ob} , for formation of this product were measured at 420 nm (Figure 2, top) over a C₆₀ concentration range^{11,12} of 5 \times 10⁻⁶ to 1 \times 10⁻³ M. A bimolecular rate constant,¹³ $k_{\rm bi} = 4.0 \times 10^8 \, {\rm M}^{-1} \, {\rm s}^{-1}$, was obtained from the results presented in Figure 2 and $k_{ob} = k_o + k_{bi}[C_{60}]$, where k_o represents the rate constant for decay of Ph₂C: in the absence of C_{60} . At the highest C_{60} concentrations used in Figure 2 (>5 \times 10⁻⁴ M) some photoexcitation of C₆₀ was observed at 420 nm. Fortunately, the amplitude and lifetime of the ${}^{3}C_{60}*$ absorption signal did not interfere with the measurement of the growth kinetics of the Ph_2C_{61} product since ${}^{3}C_{60}$ * was found to rapidly decay in the presence of Ph₂CN₂.^{14,15} The rate constant for reaction of ${}^{3}C_{60}^{*}$ with Ph₂CN₂ (4.1 × 10⁸ M⁻¹ s⁻¹) was independently determined by excitation of 1×10^{-3} M C₆₀ and selective measurement of ${}^{3}C_{60}*$ decay kinetics at 750 nm over a Ph₂CN₂ concentration range of 5 \times 10⁻⁴ to 2.7 \times 10⁻² M.

In summary, it should be noted that it is possible that the absorption signal observed following LFP of Ph₂CN₂ in the presence of C_{60} is due to the initial cyclopropane adduct formed by carbene addition; however, the typical instability of norcaradienes¹⁸ and the spectral similarities with the thermally generated product of Ph₂CN₂ and C₆₀ strongly suggest that the absorption signal observed following LFP is that of the fulleroid Ph_2C_{61} .

Acknowledgment. The work described herein was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy. This is Contribution No. NDRL-3722 from the Notre Dame Radiation Laboratory.

JA941840E

(10) Photodecomposition of Ph₂CN₂ using visible light has been previously reported. Li, Y.-Z.; Schuster, G. B. J. Org. Chem. **1987**, 52, 4460-4464.

(11) The solubility limit of C_{60} in benzene is 1.7 mg/mL. Ruoff, R. S.; Tse, D. S.; Malhotra, R.; Lorents, D. C. J. Phys. Chem. 1993, 97, 3379-3383

(12) Attempts to use either 308 or 337 nm laser excitation were unsuccessful due to significant C_{60} excitation and a limited $[C_{60}]$ range, approximately 5×10^{-6} to 5×10^{-5} M.

(13) k_{bi} represents all modes of Ph₂C: reactivity with C₆₀, since k_{ob} = $k_{\rm T}$ + Kk_s, where $k_{\rm T}$ and $k_{\rm S}$ are the triplet and singlet rate constants, respectively, and K is the singlet/triplet equilibrium constant.

(14) Triplet energy transfer is a likely mechanism for the observed reactivity.¹⁵ Direct production of triplet carbenes by sensitization is a common means of investigation of carbene state selective reactivity. See: March, J. Advanced Organic Chemistry, 4th ed.; Wiley-Interscience: New York, 1992; pp 195-197. Turro, N. J. Modern Molecular Photochemistry; Benjamin/Cummings: Menlo Park, 1978; pp 552–556. For triplet-sensitized decomposition of Ph₂CN₂ see, for example: Eisenthal, K. B.; Turro, N. J.; Sitzmann, E. V.; Gould, I. R.; Hefferon, G.; Langan, J.; Cha, Y. Tetrahedron 1985, 41, 1543-1554.

(15) A triplet energy (E_T) of Ph₂CN₂ comparable to or lower than that of C_{60} ($E_T = 36$ kcal/mol)¹⁶ would support a triplet energy transfer mechanism; however, the E_T of Ph₂CN₂ is not available in the literature. Therefore, triplet anthracene (42.5 kcal/mol), 1,6-diphenylhexatriene (35.6 kcal/mol), and tetracene (29.3 kcal/mol) have been generated by LFP and $k_{\rm bi} = 2.0 \times 10^9$, 1.9×10^7 , and $< 1 \times 10^5 \,{\rm M}^{-1} \,{\rm s}^2$ ²¹, respectively, were obtained using Ph₂CN₂ as the quenching substrate. These results indicate that the E_T of Ph_2CN_2 is lower than that of C_{60} and fully supports a triplet sensitization mechanism.¹⁷ The results are also inconsistent with an electron transfer mechanism.

⁽⁷⁾ Barcus, R. L.; Hadel, L. M.; Johnston, L. J.; Platz, M. S.; Savino,

<sup>T.; Scaiano, J. C. J. Am. Chem. Soc. 1986, 108, 3928-3937.
(8) Quanta Ray DCR-1 Nd:YAG (~10 mJ pulse width ~6 ns). The LFP apparatus is described elsewhere. Fessenden, R. W.; Nagarajan, V. J. Phys.</sup> Chem. 1985, 89, 2330-2335.

⁽⁹⁾ OD_∞ represents the last data point taken from the "growth" of the 426 nm band.

⁽¹⁶⁾ $E_{\rm T}$ values were obtained from the following: Morov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochemistry, 2nd ed.; Marcel Dekker, Inc.: New York, 1993.

^{(17) (}a) Koizumi, M.; Kato, S.; Mataga, N.; Matsoura, T.; Usui, Y. Photosensitized Reactions; Kagakudojin Publishing: Kyoto, 1978. (b) Murov, S. L. Handbook of Photochemistry; Marcel Dekker, Inc.: New York,

^{1973;} pp 53-63. (18) March, J. Advanced Organic Chemistry, 4th ed.; Wiley-Inter-science: New York, 1992; p 869.